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1. Introduction

This paper is devoted to the study of the relation between supersymmetric orbifold lattices

and twisted versions of extended supersymmetric gauge theories. This turns out to be useful

in many respects. The viewpoint of this paper explains many oddities of orbifold lattices,

such as associating spinless bosons of the continuum with the link fields on the lattice, and

associating double-valued spinors of the continuum with single-valued representations of

the lattice point group symmetry. To the reader acquainted with the so called “topological”

twisting this should all sound natural and be thought as a lattice version of it. And this is

indeed true. Most of this paper is a study of representation theory of continuous and finite

symmetry groups to convey this picture. Making the orbifold lattice-twisted continuum

theory correspondence clear also fulfills some curiosities on the relation between the two

recent independent approaches on supersymmetric lattices, and in fact it reconciles them.

This will be made more precise.
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The formulation of the twisted theories was initiated by Witten in his classic work on

Donaldson theory of four manifolds [1]. Witten constructed a twisted version of the asymp-

totically free N = 2 supersymmetric Yang-Mills theory and calculated certain topological

correlators, both in the ultraviolet by taking advantage of the weak coupling limit [1], and

in the infrared, long distance point of view [2]. As these correlators are metric independent,

they naturally come out to be the same. The technique for constructing twisted versions of

other extended supersymmetric gauge theories, such as N = 4 SYM, has been investigated

in depth [3 – 5] and the ones which are relevant to the discussions of orbifold lattices are

due to Marcus [6], and Blau and Thompson [7].

There are two recent independent approaches for the construction of a nonperturba-

tive regularization of the supersymmetric gauge theories, and as stated earlier, one of the

primary goal of this paper is to make the relation between the two precise. The first ap-

proach, the orbifold lattice, is based on an orbifold projection of a supersymmetric matrix

model [8 – 12]. The projection generates a lattice theory while preserving a subset of the

supersymmetries of the target theory and benefits from the deconstruction limit [13]. The

other approach, pioneered by Catterall, [14 – 18] uses twists of Witten type along with

Dirac-Kähler fermions. The main idea is to express the continuum action in a twisted

form and discretize the theory by keeping a subset of the nilpotent (up to gauge transfor-

mations) supersymmetries exact even at finite lattice spacing. The Dirac-Kähler fermions

have a geometric realization on the lattice and are usually associated with p-cells. Sugino

pursued an approach based on “balanced topological field theory form” [5] and chose to

put fermions on the sites [19 – 22]. There are also claims that the full twisted superalgebra

can be incorporated to the lattice with a modified definition of Leibniz rule [23 – 25]. The

outcomes of these two approaches are not identical. The reader may wonder why this is so,

considering that the orbifold lattices produce twisted theories in the continuum. In a nut-

shell, the difference between the two approaches can be traced to the non-uniqueness of the

embedding of the scalar supersymmetries on the lattice. As we will see, in the twisted for-

mulation of these theories there is usually more than one scalar supercharge and any linear

combination can be used on the lattice. (Also see the references [26 – 32] for related works.)

One of the main outcomes of our analysis is that the discrete point group symmetry

of the orbifold lattices is not a subgroup of the Lorentz group per se, but the twisted

version of it. In this viewpoint, the scalars of the physical theory turns out to be vectors

under the twisted Lorentz symmetry, which explain their appearance as the link fields.

Moreover, the spinors (double valued representations) of the physical theory transform in

the single-valued integer spin representations of the twisted theory. Therefore, spinors of

the continuum theory are associated with single valued lattice representations. Hence, their

appearances on the p-cells, sites, links, faces etc. of the hypercubic lattice can be naturally

understood. We reach the same conclusions in two different ways. In the bulk of the paper,

we construct twistings in terms of continuous groups, then translate the outcome to the

lattice. In a short appendix, we sketch a complementary approach. We consider double-

valued finite groups, which are indeed the discrete spacetime and discrete R-symmetries.

Then, we show how twisting glues objects of half-integer spin into integer spin multiplets

of the diagonal subgroup of discrete R and spacetime symmetry.
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We also explain the relation between the A∗
d lattices and the twisted versions of Q = 16

supercharge target theories in d dimensions. The A∗
d lattices are the most symmetric

lattices, in particular they are more symmetric than the hypercubic ones. This is important

when considering the quantum continuum limit and renormalization of these theories. The

greater the symmetry of the spacetime lattice, the fewer relevant and marginal operators

will exist. Therefore, the most symmetrical arrangements of the lattices are preferred to

minimize the fine tunings in attaining the continuum limit. The point group symmetry

of A∗
d lattices involves at least the permutation group Sd+1 (not Sd as in the case of d

dimensional cubic lattice). We should emphasize that the group Sd+1 does not have double

valued (spinor) representations at all, even though all the target theories possess spinor

representations. We will observe that there is a close relation between the finite group Sd+1

and continuum twisted Lorentz group and their representations. This will be discussed in

depth in section 3.3 and is one of the main results of this paper.

The twisted theories emerging from the orbifold lattices are examined in the context of

the topological twisting of the extended supersymmetric field theories. In four dimensions,

the twist of N = 4 is introduced by Marcus [6]. The three dimensional N = 4 and

N = 8 and two dimensional N = (8, 8), N = (4, 4) theories are presented by Blau and

Thompson [7] and are examined in more detail in [33, 34]. The twist of the two dimensional

N = (2, 2) theory seems to be a new example of [6, 7] type and is examined in more

detail here. Conversely, starting with the continuum form of the twisted theory, it is

possible to reverse engineer the hypercubic orbifold lattice by using a simple recipe given

by Catterall [16].

2. Maximal twisting and orbifold projection

In this section, we briefly review the twistings of extended supersymmetric gauge theories

in the continuum formulation on R
d [1] and sketch its relation to orbifold projections

of supersymmetric matrix models. The theories of interest have a Euclidean rotation

group SO(d)E and possess a global R-symmetry group GR. For six of the theories shown

in table 1, the R-symmetry group possess a SO(d)R subgroup. Hence, the full global

symmetry of the supersymmetric theory has a subgroup SO(d)E ×SO(d)R ⊂ SO(d)E ×GR.

To construct the twisted theory, we embed a new rotation group SO(d)′ into the diagonal

sum of SO(d)E × SO(d)R, and declare this SO(d)′ as the new Lorentz symmetry of the

theory. 1

Since the details of each such construction are slightly different, let us restrict to

generalities first. Let us assume that a fermionic field which is a spacetime spinor, is

in spinor representation of R-symmetry group SO(d)R as well. Since the product of two

half-integer spin is always an integer spin, all Grassmann odd degrees of freedom are in

integer spin representations of SO(d)′. We can express the fermions as a direct sum of

scalars, vectors, i.e as p-form tensors. Let us label a p-form fermion as ψ(p). In all of our

applications, the Q many fermions of a target field theory in d dimensions are distributed

1We will not distinguish spin groups Spin(n) from SO(n) unless otherwise specified.
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Theory Lorentz Q = 4 Q = 8 Q = 16

d = 2 SO(2) SO(2) × U(1) SO(4) × SU(2) SO(8)

d = 3 SO(3) U(1) SO(3) × SU(2) SO(7)

d = 4 SO(4) U(1) SO(2) × SU(2) SO(6)

Table 1: The R-symmetry groups of various supersymmetric gauge theories obtained by dimen-

sionally reducing minimal N = 1 theories from d = 4, 6, 10 dimensions. These R-symmetries are

the product of the global symmetry due to reduced dimensions and the R-symmetry of the theory

prior to reduction.

to multiplets of SO(d)′ as

fermions → Q
2d

(ψ(0) ⊕ ψ(1) ⊕ . . . ψ(d)) (2.1)

where the multiplicative factor up front is one, two or four. For a given p-form, there are
Q
2d

(d
p

)
fermions. Summing over all p, we obtain the total number of fermions in the target

theory: Q
2d

∑d
p=0

(d
p

)
= Q

Turning to Grassmann even fields, the gauge bosons Vµ transforming as (d, 1) and

the spacetime scalars Sµ transforming as (1, d) under the SO(d)E × SO(d)R level. Both

transform as vectors (d) under the SO(d)′. If there are more then d scalars in the untwisted

theory, they become either 0-forms or d-forms under SO(d)′.

This type of twist is sometimes referred as maximal twist as it involves the twisting

of the full Lorentz symmetry group as opposed to twisting its subgroup. In this sense, the

four dimensional N = 2 theory can only admit a half twisting as its R-symmetry group is

not as large as SO(4)E [1]. The other two theories, N = 1 in d = 4 and N = 1 in d = 3

shown in table 1 do not admit a nontrivial twisting as there is no nontrivial homomorphism

from their Euclidean rotation group to their R-symmetry group.

The action expressed in terms of the representation of the twisted Lorentz group SO(d)′

instead of the ones of the usual Lorentz symmetry, is called twisted action. The twisted

version can be expressed as a sum of Q-exact and Q-closed terms, where Q-is the supersym-

metry associated with scalar supersymmetry transformation. 2 As it is well know, so long

as the usual Lorentz symmetry is not gauged, i.e., on flat spacetime, the twisted theory is

merely a rewriting of the physical theory, and indeed possess all the supersymmetries of

the physical theory. 3

The main point of this twist is that none of the degrees of freedom are spinors under

SO(d)′. Both bosons and fermions are in integer spin representations. They are p-form

tensors of SO(d)′. This particular form of the twisted theory is the bridge to orbifold

2One can make this theory topological by interpreting the scalar supercharge Q as a BRST operator [1].

Even without doing so, one can still say that the physical theory has a set of topological observables,

appropriately defined correlators of the twisted operators.
3In fact, if the base space of the theory is an arbitrary d-dimensional curved manifold Md, then only the

scalar supercharge is preserved. It is somehow peculiar that the discretized background spacetime (lattice)

also respects the one and same nilpotent scalar supersymmetry.
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lattices. Given such a twisted theory, it is natural to associate a p-form continuum field

with a p-cell field on the hypercubic lattice. This is exactly what an orbifold lattice does.

The orbifold projection places the fermions to sites, links, faces, i.e, to p-cells. This is

in agreement with our expectation from the twisted rotation symmetry SO(d)′. On the

orbifold lattice, there are also complex bosons (complexification of Sµ and Vµ as (Sµ ±
iVµ)/

√
2) associated with oppositely oriented links and certain fields associated with p-

cells. We refer the reader to ref. [10, 8] for a detailed explanation of the orbifold projection

and r-charge assignments. By using the analysis of ref. [10], we see that r-charge assignment

is intimately related to how a field transforms in the continuum. Mainly, the total number

of nonzero components of the r-charge is the degree p of the tensor representation of SO(d)′.

The signs of components of r determine the orientation of the corresponding lattice field.

For example, on a d = 2 dimensional square lattice, we associate fermions with r = (0, 0)

with 0-cell, r = (1, 0) with 1-cells in e1 direction, r = (0, 1) with 1-cells in e2-direction and

r = (−1,−1) with a 2-cell field in −e1 − e2 direction. These respectively become zero, one

and two form tensor fermions as in eq. (2.1) under the continuum SO(d)′.

One may ask how does these orbifold projections know about the representations of the

twisted group. Recall that the r-charges are given in an appropriate abelian subgroup of the

full R-symmetry group of a zero dimensional matrix model. This matrix model is obtained

by dimensionally reducing the target theory to zero dimension and possesses at least an

SO(d)E ×GR R-symmetry group. The GR is the R-symmetry prior to reduction and more

importantly, SO(d)E , which used to be the Lorentz symmetry of the target theory, is an R-

symmetry of matrix theory. The full R-symmetry group of the matrix theory is in general

larger than SO(d)E × GR. For example, for N = 4 SYM theory reduced from d = 4 to

d = 0 dimensions has a manifest SO(4)E × SO(6)R R-symmetry, but it clearly enhances to

SO(10)R. The choice of r-charges mixes the global Lorentz R-symmetry SO(d)E with GR in

a profound way. It is in fact a form of twisting. Let us again restrict to N = 4 SYM theory

and its reduced version. The reduced version has an SO(10)R. For hypercubic lattices, the

SO(10)R → SO(8)× SO(2) → SU(4)×U(1)×U(1) branching plays a fundamental role. In

fact, the r charges is embedded in U(1)4 subgroup of SU(4) × U(1) × U(1) and the intact

U(1) remains to be an R-symmetry of lattice theory. One may wonder what does this SU(4)

has anything to do with the diagonal SO(4)′ of continuum theory. The answer is somewhat

subtle. The lattice which is obtained by the orbifold projection has a finite nonabelian point

group symmetry, which is the Weyl group of SU(4), i.e., Weyl(SU(4)) = S4 isomorphic

to the permutation group S4. And in fact, this Weyl group is the discrete subgroup of

diagonal SO(4)′, i.e, S4 ⊂ SO(4)′. Under a conveniently chosen abelian subgroup of full

R-symmetry, the fermions carry integer charges as bosons and they form supermultiplets.

These multiplets transform in representation of non-abelian point group symmetry (or

equivalently Weyl group).

The proper understanding of the more symmetric A∗
d lattices, which arise for Q = 16

supercharge target theories in d dimensions, from the twisted supersymmetry viewpoint is a

little bit more involved, but is a worthy endeavor. The A∗
d lattices are the most symmetric

lattices, and the greater the symmetry of the spacetime lattice, the fewer relevant and

marginal operator will exist. The point group symmetry of A∗
d involves the Weyl group of

– 5 –



J
H
E
P
1
0
(
2
0
0
6
)
0
8
9

SU(d + 1), rather than SU(d). For example, the highly symmetric lattice A∗
4 for N = 4

SYM theory has an S5 = Weyl(SU(5)) point group symmetry, which is much larger than

the point group symmetry of hypercubic lattice. The classification of the fields on the A∗
4

lattice under the point group symmetry is discussed in detail in the next sections. As we

will see, there is a close relation between Weyl(SU(d + 1)) = Sd+1 and continuum twisted

rotation group SO(d)′ and their representations.

This line of reasoning teaches us that the point group symmetry of the lattice is not

a subgroup of the Euclidean Lorentz group, but in fact a discrete subgroup of the twisted

rotation group SO(d)′. In the continuum, the orbifold lattice theory becomes the twisted

version of the desired target field theory. The change of variables which takes the twisted

form to the canonical form essentially undoes the twist.

3. Marcus’s twist of N = 4 SYM in d = 4

There are various possible twists of the N = 4 SYM theory in four dimensions [3, 4, 6].

The one we will consider and which emerges out of the orbifold lattice naturally is due to

Marcus. Here, we briefly outline the twisting procedure. One interesting property of this

twisting is that it admits a superfield formulation.

The N = 4 SYM theory in d = 4 dimensions possesses a global Euclidean Lorentz

symmetry SO(4)E ∼ SU(2) × SU(2), a global R-symmetry group SO(6) ∼ SU(4). The

R-symmetry contains a subgroup SO(4)R ×U(1). To construct the twisted theory, we take

the diagonal sum of SO(4)E × SO(4)R and declare it the new rotation group. Since the

U(1) part of the symmetry group is undisturbed, it remains as a global R-symmetry of the

twisted theory.

Under the G =
(
SU(2) × SU(2)

)
E

×
(
SU(2) × SU(2)

)
R

symmetry, the fermions

transform as (2, 1, 2, 1) ⊕ (2, 1, 1, 2) ⊕ (1, 2, 1, 2) ⊕ (1, 2, 2, 1). These fields, under G′ =

SU(2)′ × SU(2)′ × U(1) (or under SO(4)′ × U(1)) transform as4

fermions → (1, 1) 1

2

⊕ (2, 2)− 1

2

⊕ [(3, 1) ⊕ (1, 3)] 1

2

⊕ (2, 2)− 1

2

⊕ (1, 1) 1

2→ 1 1

2

⊕ 4− 1

2

⊕ 6 1

2

⊕ 4− 1

2

⊕ 1 1

2

. (3.1)

The magic of this particular embedding is clear. There are two spin zero fermions, and all

the fermions are now in the integer spin representation of the twisted Lorentz symmetry

SO(4)′. They transform as scalars, vectors, and higher rank p-form tensors. We parametrize

these Grassmann valued tensors, accordingly, (λ,ψµ, ξµν , ξµνρ, ψµνρσ).

The gauge boson Vµ which transform as (2, 2, 1, 1) under the group G becomes (2, 2)

under G′. Similarly, four of the scalars Sµ transforming as (1, 1, 2, 2) are elevated to the

same footing as the gauge boson and transform as (2, 2) under twisted rotation group. The

complexification of the two vector plays a more fundamental role in the formulation. We

4Twice of the U(1) charge is usually called the ghost number in the topological counterpart of this theory.
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therefore define the complex vector fields 5

zµ = (Sµ + iV µ)/
√

2, zµ = (Sµ − iVµ)/
√

2 µ = 1, . . . , 4 (3.2)

Since there are two types of vector fields, there are indeed two types of complexified gauge

covariant derivative appearing in the formulation. These are holomorhic and antiholomor-

phic covariant derivatives

Dµ · = ∂µ · +
√

2[zµ, · ], Dµ · = −∂µ · +
√

2[zµ, · ] , (3.3)

Only three combination of the covariant derivatives (similar to the F -term and D-term in

the N = 1 gauge theories) appear in the formulation. These are

Fµν = −i[Dµ,Dν ] = Fµν − i[Sµ, Sν ] − i(DµSν − DνSµ)

Fµν = −i[Dµ,Dν ] = Fµν − i[Sµ, Sν ] + i(DµSν − DνSµ)

(−id) = 1
2 [Dµ,Dµ] + · · · = −DµSµ + · · · (3.4)

where Dµ · = ∂µ · +i[Vµ, · ] is the usual covariant derivative and Fµν = −i[Dµ,Dν ] is the

nonabelian field strength. The field strength Fµν(x) is holomorphic, it only depends on

complexified vector field zµ and not on zµ. Likewise, Fµν is anti-holomorphic. The (−id)

will come out of the solutions of equations of motion for auxiliary field d and dots stands

for possible scalar contributions. These combination arises from all of the orbifold lattice

constructions, and is one of the reasons for considering this type of twist.

Finally, the two other scalars remains as scalars under the twisted rotation group. Since

one of the scalars is the superpartner (as will be seen below) of the four form fermion, we

label them as (zµνρσ , zµνρσ). To summarize, the bosons transform under G′ as

bosons → zµνρσ ⊕ zµ ⊕ zµ ⊕ zµνρσ → [(1, 1)1 ⊕ (2, 2)0 + (2, 2)0 + (1, 1)−1] (3.5)

As can be seen easily from the decomposition of the fermions, there are two Lorentz

singlet supercharges (1, 1) under the twisted Lorentz group and either of these (or their

linear combinations) can be used to write down the Lagrangian of the four dimensional

theory in “topological” form. The difference in lattices obtained in [35, 17, 21] and orb-

ifold lattices [8] is tightly related to the choice of the scalar supercharge, and this will be

further discussed in section 3.4. Here, we use the spin zero supercharge associated with λ

(motivated by the orbifold lattice). This produces the transformations given by [6].

The continuum off-shell supersymmetry transformations are given by

Qλ = −id, Qd = 0

Qzµ =
√

2 ψµ, Qψµ = 0

Qzµ = 0

Qξµν = −iFµν

5Throughout this paper, µ, ν, ρ, σ . . . are SO(d)′ or d-dimensional hypercubic indices and summed over

1, . . . d. The indices m, n, . . . are indices for permutation group Sd+1 (for A∗
d lattices) and are summed over

1, . . . , (d + 1).
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Qξνρσ =
√

2Dµzµνρσ

Qzµνρσ =
√

2ψµνρσ , Qψµνρσ = 0

Qzµνρσ = 0 (3.6)

where d is an auxiliary field introduced for the off-shell completion of the supersymmetry

algebra. Clearly, the scalar supercharge is nilpotent

Q2 · = 0. (3.7)

owing to the anti-holomorphy of Fµν etc. The fact that the subalgebra (Q2 = 0) does

not produce any spacetime translations makes it possible to carry it easily onto the lat-

tice. The exact nilpotency, as opposed to being nilpotent modulo gauge transformation

has a technical advantage. It admits a rather exotic superfield formulation of the target

supersymmetric field theory which will be discussed in the next section.

The twisted Lagrangian may be written as a sum of Q-exact and Q-closed terms:

g2L = Lexact + Lclosed = L1 + L2 + L3 = QL̃exact + Lclosed, (3.8)

where g is coupling constant and L̃exact = L̃e,1 + L̃e,2 is given by

L̃e,1 = Tr
(
λ(1

2 id + 1
2 [Dµ,Dµ] + 1

24 [zµνρσ , zµνρσ ])
)

L̃e,2 = Tr
(

i
4ξµνFµν + 1

12
√

2
ξνρσDµzµνρσ

)
(3.9)

and Lclosed is given by

Lclosed = L3 = Tr 1
2ξµνDρξ

µνρ +
√

2
8 ξµν [z

µνρσ , ξρσ] (3.10)

By using the transformation properties of fields and the equation of motion auxiliary field d

(−id) = 1
2 [Dµ,Dµ] + 1

24 [zµνρσ, zµνρσ ] , (3.11)

we obtain the Lagrangian expressed in terms of propagating degrees of freedom: 6

L1 = Tr
(

1
2(1

2 [Dµ,Dµ] + 1
24 [zµνρσ, zµνρσ ])2 + λ(Dµψµ + 1

24 [zµνρσ, ψµνρσ ])
)

L2 = Tr
(

1
4FµνFµν + ξµνDµψν + 1

12 |Dµzµνρσ |2 + 1
12ξνρσDµψµνρσ + 1

6
√

2
ξνρσ[ψµ, zµνρσ ]

)

L3 = Tr
(

1
2ξµνDρξ

µνρ +
√

2
8 ξµν [zµνρσ , ξρσ]

)
. (3.12)

The Q-invariance of the Lexact is obvious and follows from supersymmetry algebra Q2 = 0.

To show the invariance of Q-closed term requires the use of the Bianchi (or Jacobi identity

for covariant derivatives) identity

εσµνρDµFνρ = εσµνρ[Dµ, [Dν ,Dρ]] = 0 (3.13)

and similar identity involving scalars. The action is expressed in terms of the twisted

Lorentz multiplets, and the SO(4)′×U(1) symmetry is manifest. The Lagrangian eq. (3.12)

emerges from the hypercubic and A∗
4 lattice action at the tree level. This will be discussed

after the following digression to superfield formulation of Marcus’s twist.

6Notice that the splitting of the exact terms in Lagrangian into L1 and L2 is not identical to the one

used by Marcus. The reason for the above splitting lies in the symmetries of the cut-off theory (A∗
d lattice

theory) that will be discussed later.
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3.1 The Q = 1 (twisted) superfields formulation of N = 4 SYM

In this section, we introduce a superfield notation for the the twisted N = 4 SYM theory.

The superfields are SO(4)′ multiplets. This is so since the manifest supersymmetry is a

scalar and exactly nilpotent. Consequently, different components of a multiplet (unlike the

usual supersymmetry multiplets in four dimensions) reside in the same representation of

twisted rotation group.

The supermultiplets are all in integer spin representations of SO(4)′. The superfields

are a scalar fermi multiplet Λ(x) transforming as (1) 1

2

, a vector multiplet Zµ(x) transform-

ing as (4)0, a two-form fermi multiplet Ξµν(x) transforming as (6) 1

2

, a three-form fermi

multiplet Ξµνρ(x) in (4)− 1

2

, and a four form Zµνρσ(x) in (1)1 representation. There are

also two types of supersymmetry singlets, a vector zµ(x) in (4)0 and a four form zµνρσ(x)

transforming as (1)−1. The scalar Q = 1 off-shell supersymmetry transformations can then

be realized in terms of these superfields as

Λ(x) = λ(x) − θid(x),

Zµ(x) = zµ(x) +
√

2θψµ(x), zµ(x),

Ξµν(x) = ξµν(x) − iθFµν(x),

Ξνρσ(x) = ξνρσ(x) +
√

2θDµzµνρσ(x),

Zµνρσ(x) = zµνρσ(x) +
√

2θψµνρσ(x), zµνρσ(x). (3.14)

These superfields should be useful in formulating the N = 4 SYM not only on R
4, but on ar-

bitrary curved four-manifold M4, mainly because they are based on scalar supersymmetry.

By introducing the super-covariant derivative;

DDDµ = ∂µ +
√

2Zµ = Dµ + 2θψµ (3.15)

we can also define the field strength multiplet

FFFµν = −i[DDDµ,DDDν ] = Fµν − 2iθ(Dµψν −Dνψµ) (3.16)

transforming as (6)0 under SO(4)′ ×U(1). In terms of the Q = 1 superfields, the action of

the N = 4 SYM theory on R
4 can be expressed as

S =
1

g2
Tr

∫
d4x dθ

(
−1

2
Λ∂θΛ − Λ(

1

2
[Dµ,DDDµ] +

1

24
[zµνρσ,Zµνρσ ])

+
i

4
ΞµνFFFµν +

1

12
√

2
ΞνρσDDDµZµνρσ

)

+
1

2
Ξµν Dρ Ξµνρ +

√
2

8
Ξµν [zµνρσ ,Ξρσ] (3.17)

The last line is not integrated over the superspace and is the Q-closed term discussed above.

Its θ component vanishes because of Jacobi identities, hence it is supersymmetric. Notice

that the three lines of this action respectively corresponds to L1,L2,L3 in eq. (3.12).
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3.2 Hypercubic lattice

The action eq. (3.12), or equivalently eq. (3.17), expressed in terms of integer spin repre-

sentations (p-forms) of SO(4)′ arises naturally from orbifold lattices [8, 36]. Recall that the

fundamental cell of the hypercubic lattice contains one site, four links, six faces, four cubes

and one hypercube, collectively named as p-cells. A p-form tensor fermion is associated

with a p-cell on the hypercubic lattice. The complex vectors of SO(4)′ are associated with

the link fields. Finally, the two scalars (four-forms) are associated with the four-cell as can

be deduced from the supersymmetry algebra.

The action eq. (3.17) with manifest scalar supersymmetry (in fact, possessing all six-

teen supersymmetries) admits a discretization to a hypercubic lattice in which one preserves

the scalar supercharge. The hypercubic lattice action is given in [36]. The rules of latti-

cization are natural and given by Catterall (except the rule which requires complexification

of the fields. Our bosons and fermions are already complex and oriented.) [16, 35]. For

our purpose, it suffices to understand the transformations given in eq. (3.6). The local

transformations in eq. (3.6) remain the same, modulo the trivial substitution of space-

time position x with a discrete lattice position index n. There are two types of semi-

local transformation. The first one is Qξµν(x) = −iFµν(x). This translates to Qξµν,n =

−2(zµ,n+eν zν,n − zν,n+eµzµ,n). The right hand side is the square root of the usual Wilson

plaquette term. Similarly, Fµν(x) becomes zµ
nzν

n+eµ
− zν

nzµ
n+eν

.7 The second transforma-

tion Qξνρσ(x) =
√

2Dµzµνρσ(x) translates into Qξνρσ
n = 2(zµ,n−eµνρσ zµνρσ

n − zµνρσ
n+eµ

zµ,n)

where eµνρσ =
∑

ζ eζ and (eµ)ν = δµν are the cartesian unit vectors. It is appropriate to

parametrize the complex link fields zµ as

zµ
n

=
1√
2a

ea(Sµ,n+iVµ,n), (3.18)

where a is the lattice spacing. Substituting these into, for example, FµνFµν produce a

complexified Wilson action. This parametrization differs from the ones used in [37, 8].

However, the difference in the continuum is in the irrelevant operators, suppressed by

powers of the lattice spacing. This prescription generates the lattice actions discussed in

detail in [36, 8] and we will not duplicate it here. Instead, we want to comment on the

emergence of large global chiral symmetries, the R-symmetry, in the continuum of orbifold

lattices.

In lattice QCD, Poincaré invariance emerges in the continuum without any fine tuning,

due to the point group symmetry, discrete translation symmetry and gauge invariance.

The Poincaré violating relevant and marginal operators are usually forbidden due to these

symmetries, and we recover the Poincaré invariant target theory. In our case, the continuum

limit of the hypercubic lattice at tree level, by construction, reproduces the target theory

with a twisted Lorentz invariance SO(4)′. The U(1)R symmetry is exact on the hypercubic

lattice, and hence it is exact in the continuum. The SO(4)′×U(1) invariant target theory is a

redefinition of the physical N = 4 SYM theory, which possesses a Lorentz symmetry group

7Recall that the usual Wilson action may also be written as S =
P

n
Tr |Uµ,nUν,n+eµ

− Uν,nUµ,n+eν
|2

where the quantity in modulus is the field strength and is indeed the square root of a plaquette.
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and a large R-symmetry, SO(4) × SO(6). The twisting obscures the large R-symmetry.

However, knowing how SO(4)′ arises, we see that there is really an SO(4)E × SO(4)R
behind what appears to be a twisted Lorentz symmetry. This means the large R-symmetry

group arises from the lattice hand in hand with Lorentz symmetry. This happens to be

so since the point symmetry group of the lattice is a subgroup of the diagonal subgroup

of SO(4)E × SO(4)R. Of course, the full R-symmetry is SO(6) and the above tree level

argument only explains SO(4)R × U(1) subgroup of it. We will, nevertheless, be content

with it.

3.3 What does the A∗
4 lattice knows about twisting?

In this section, we want to explain an elegant relation between A∗
4 lattice and the twisted

continuum theory eq. (3.12).8 The A∗
4 lattice for N = 4 SYM theory is introduced in ref. [8]

and arises as the most symmetrical lattice arrangement in the moduli space of orbifold

lattice theory. In particular, it is more symmetric than the hypercubic lattice. Higher

symmetry is an important virtue when the renormalization and the quantum continuum

limit of the lattice theory is addressed. When considering the radiative corrections, the

relevant and marginal operators will be restricted by the symmetries of the underlying

theory. Therefore, fewer relevant and marginal operators will exist for the more symmetric

spacetime lattice. For lower dimensional examples, the combination of lattice point group

symmetry, the exact supersymmetry and superrenormalizibility are used to show that the

desired target theories are attained with no or few fine tunings at the quantum level. We

hope that the techniques of this section can eventually be used in addressing the important

problem of renormalization of N = 4 in d = 4 dimensions. Our aim here is different, and

in fact more modest - namely showing the relation between the A∗
4 lattice and Marcus’s

twist. Our analysis is at the tree level. We show this relation by finding the irreducible

representations of the point group symmetry of the lattice action, and by identifying them

with the ones of the twisted Lorentz group SO(4)′.

We have already seen the field distribution on the hypercubic lattice and identified

lattice p-cell fields with p-form tensors in the continuum. The situation for A∗
4 is a little

more subtle and requires basic representation and character theory for finite groups. The

generalization to other dimensions for which target theory is Q = 16 and lattice is A∗
d is

obvious.

The A∗
4 lattice is generated by the fundamental weights, or equivalently by the weights

of defining representation SU(5). A specific basis for A∗
4 lattice is given in the form of five,

four dimensional lattice vectors:

e1 = ( 1√
2
, 1√

6
, 1√

12
, 1√

20
)

e2 = (− 1√
2
, 1√

6
, 1√

12
, 1√

20
)

e3 = (0,− 2√
6
, 1√

12
, 1√

20
)

8This techniques used in this section borrows from unpublished notes of David B. Kaplan on A∗
3 lattices

for spatial lattice construction of N = 4 SYM in the context of renormalization. I would like to thank him

for sharing them with me.
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e4 = (0, 0,− 3√
12

, 1√
20

)

e5 = (0, 0, 0,− 4√
20

). (3.19)

These vectors satisfy the relations

5∑

m=1

em = 0 , em · en =

(
δmn − 1

5

)
,

5∑

m=1

(em)µ(em)ν = δµν . (3.20)

The lattice vectors eq. (3.19) connect the center of a 4-simplex to its five corners and are

simply related to the SU(5) weights of the 5 representation. The unit cell of the lattice is

a compound of two 4-simplex as in the 5 and 5 representations of SU(5).9

The matter content of A∗
4 lattice theory is most easily described in terms of represen-

tations of SU(5). The ten bosonic degrees of freedom are labeled as zm ⊕ zm = 5⊕ 5, and

the sixteen fermions are presented as λ⊕ψm ⊕ ξmn = 1⊕5⊕ 10. The zm, ψm fields reside

on the links connecting the center of a 4-simplex to its five corners, which are labeled by

em. The zm reside on the links along −em. The ten fermions ξmn, and ten composite

antiholomorphic bosonic fields Emn = [zm, zn] reside on −em − en directed toward the ten

sides of the 4-simplex and finally the singlet λ resides on the site. For more details on

the A∗
4 lattice, see ref. [8]. The point group symmetry of the action is permutation group

S5, the Weyl group of SU(5). Notice that inversion is not a symmetry, since there is no 5

representation in fermionic sector.

Let us reexpress the A∗
4 lattice action for N = 4 theory as a sum of Q-exact L1 and

L2, and Q-closed L3 terms. Because of symmetry reasons and to ease the comparison with

eq. (3.12), we present it as g2L = L1 + L2 + L3 where

L1 =
∑

n

QTr λn(1
2 idn + (zm,n−emzm

n−em
− zm

n zm,n))

L2 =
∑

n

QTr 1
2ξmn,n(zm

n
zn
n+em

− zn
n
zm
n+en

)

L3 =
∑

n

√
2

8 εmnpqr Tr ξmn,n(zp,n−epξqr,n+em+en − ξqr,n−eq−erzp,n+em+en). (3.21)

The supersymmetry transformations of the lattice fields are given by

Qλn = −idn, Qdn = 0

Qzm
n =

√
2 ψm

n , Qψm
n = 0

Qzm,n = 0

9Three dimensional counterpart is A∗
3 lattice, the body centered cubic lattice. The unit cell should be

regarded as a compound 4 and 4 representations of SU(4). The 4 (4) is generated by four, three dimensional

vectors, em (−em) with m = 1, . . . 4, which can be obtained by removing the fourth component from

eq. (3.19), i.e, by dimensional reduction. The compound of two tetrahedron, (the 4 and 4) is the famous

Stella Octangula of Kepler, the simplest polyhedral compound in three dimensions. The cube arises as the

convex hull of this object. Two dimensional counterpart is A∗
2 lattice, triangular lattice. It can be thought

as 3 and 3 representation of SU(3). The 3 (3) is generated by three, two dimensional vectors, em (−em)

with m = 1, . . . 3, which can be obtained by removing the third and the fourth component from eq. (3.19).

The A∗
4 lattice can be visualized similarly.
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classes: (1) (12) (123) (1234) (12345) (12)(34) (12)(345)

sizes: 1 10 20 30 24 15 20

χ̃1 1 1 1 1 1 1 1

χ̃2 1 -1 1 -1 1 1 -1

χ̃3 4 2 1 0 -1 0 -1

χ̃4 4 -2 1 0 -1 0 1

χ̃5 5 -1 -1 1 0 1 -1

χ̃6 5 1 -1 -1 0 1 1

χ̃7 6 0 0 0 1 -2 0

Table 2: The character table of S5, the point symmetry group of A∗

4 lattice. The even permuta-

tions are spacetime rotations, the odd permutations involves parity operations and hence improper

rotations.

Qξmn,n = −2(zm,n+enzn,n − zn,n+emzn,n). (3.22)

Clearly, the S5 singlet supersymmetry Q is nilpotent, Q2· = 0. In the rest of this section,

we show the transmutation of action eq. (3.21) into eq. (3.12) by using the representation

theory of S5. To reduce the clutter, we suppress the lattice indices which transform in an

obvious way under the point group symmetry.

The physical point group symmetry of the lattice is isomorphic to permutation group

S5. The character table and conjugacy classes of S5 are given in table 2. The group

has 5! = 120 elements and seven conjugacy classes shown in table 2. The symmetry

of the lattice action is composed of the elements of S5. It is easy to show that even

permutations with determinant one (the χ̃2 representation) are pure rotational symmetries

of the action. We see from table 2 that the odd permutations has determinant minus one

(the χ̃2 representation), and are not proper elements of SO(4)′. Hence, we consider A5, the

rotation subgroup of S5, also called alternating group of degree five. The A5 is the discrete

subgroup of proper rotations SO(4)′

A5 = S5/Z2 ∈ SO(4)′

and we classify fields under A5. Also, as noted in [8], the odd permutations are symmetries

if accompanied with a fermion phase redefinitions ξ → iξ, ψ → −iψ, and λ → iλ. The

odd permutations do not commute with supersymmetry as the field redefinition treats the

components of a supermultiplet differently.

To classify fields under A5, we consider the group action from each of the five conjugacy

classes. The character table of A5 can be deduced from S5
10 and is given in table 3. By

10The conjugacy classes of A5 can easily be read off from the character table and conjugacy classes of

S5. The character table of S5 is given in table 2. The conjugacy classes of S5 are the physical symmetries

of the 4-simplex. The conjugacy classes (which is formed of only even permutations) and the sizes of

representations of A5 are given in table 3. Notice that in A5, the 5-cycles splits into two types. (12345)
and (21345). It is easy to see that only the odd permutations (which are absent in A5, but present in S5)
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classes: (1) (123) (12345) (21345) (12)(34)

sizes: 1 20 12 12 15

χ1 1 1 1 1 1

χ2 4 1 -1 -1 0

χ3 5 -1 0 0 1

χ4 3 0 (1+
√

5)
2

(1−
√

5)
2 -1

χ5 3 0 (1−
√

5)
2

(1+
√

5)
2 -1

Table 3: The character table of A5, the rotation subgroup of S5. The pure rotational symmetries

of A∗

4
lattice.

Operation z1, z2, z3, z4, z5 χ(g(rep))

(1) z1, z2, z3, z4, z5 5

(123) z3, z1, z2, z4, z5 2

(12345) z5, z1, z2, z3, z4 0

(13452) z2, z5, z1, z3, z4 0

(12)(34) z2, z1, z4, z3, z5 1

Table 4: A representative of each conjugacy class and their action on the site and link fields

are shown in the table. The five link fermions ψm transform in the same way with zm. The

transformation of ten fermions ξmn can be deduced from the antisymmetric product representation

of zm with itself.

choosing a representative from each conjugacy class, we calculate the character of the

corresponding group element. In table 4, we show how an element from each class acts on

the link field and calculate the character χ(g) = Tr(O(g)), where g is a representative of

each class and O is a matrix representation of the operation. Since the character is a class

function, it is independent of representative. A simple calculation for all the lattice fields

yields

χ(λ) = χ(d) = (1, 1, 1, 1, 1) ∼ χ1

χ(zm) = χ(ψm) = χ(zm) = (5, 2, 0, 0, 1) ∼ χ2 ⊕ χ1

χ(ξmn) = χ(Emn) = (10, 1, 0, 0,−1, ) ∼ χ2 ⊕ χ4 ⊕ χ5 . (3.23)

By inspecting the character table, we observe that the link fields are indeed in reducible rep-

can take an element of one conjugacy class to the other. Hence there are two distinct conjugacy classes for

five-cycles in A5.

The characters for A5 can also be deduced from the ones of S5. Since the odd permutations are absent in

A5, the sign representation of S5 reduce to trivial representation eχ2|A5
= χ1. Also, noticing the relations

eχ3 eχ2 = eχ4, eχ5 eχ2 = eχ6, eχ7 eχ2 = eχ7, we see that eχ3|A5
= eχ4|A5

= χ2, eχ5|A5
= eχ6|A5

= χ3. Finally, the eχ7

is reducible in A5. From the relation, eχ7 eχ2 = eχ7, we see that eχ7 is zero for all odd permutations. It splits

as eχ7|A5
= χ4 + χ5 into two three dimensional representations. As a physical consequence, unlike S5, the

A5 can not distinguish a scalar from pseudo-scalar and a vector from a pseudo-vector.
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resentations of the point group symmetry A5. The site multiplet is in trivial representation.

χ(λ) = χ(d) = χ1 . (3.24)

The five link fields splits as

χ(zm) = χ(ψm) = χ(zm) = χ2 ⊕ χ1, (3.25)

into a singlet representation and a four dimensional representation. Similarly, the ten

fermions ξmn decompose into a four and two three dimensional representations as

χ(ξmn) = χ(Emn) = χ2 ⊕ χ4 ⊕ χ5 (3.26)

One can also show that the product of fields which make the Emn = [zm, zn] function

transforms as

χ(Emn) = [χ(zm) ⊗ χ(zn)]A.S. = χ2 ⊕ χ4 ⊕ χ5 (3.27)

Notice that the splitting of χ(ξmn) and χ(Emn) in S5 is χ̃3 ⊕ χ̃7 into a four and six di-

mensional representation. Under A5, χ̃7|A5
= χ4 ⊕ χ5 splits further because of lower

symmetry. We observe that the elementary fermionic and bosonic degrees of freedom split

into irreducible representations as

fermions → 2χ1 ⊕ 2χ2 ⊕ [χ4 ⊕ χ5] = 2(1) ⊕ 2(4) ⊕ [3 ⊕ 3′]

bosons → 2χ1 ⊕ 2χ2 = 2(1) ⊕ 2(4) , (3.28)

where the dimension of the corresponding irreducible representations is written explicitly.

This is indeed the branching of fermions and bosons under the twisted Lorentz symmetry

SO(4)′ discussed in section 3. It is easy to identify the continuum fields (which transform

under the irreducible representations of twisted rotation symmetry SO(4)′) with the ir-

reducible representation of the discrete rotations on the lattice. The two scalar fermions

of the continuum theory are associated with the two singlet (χ1) fermions on the lattice.

Similarly, the vector and three form of the continuum are the two four dimensional χ2 rep-

resentation. Finally, the six fermions (in two index antisymmetric representation) of the

continuum theory 6 of SO(4)′ reside in the two three dimensional representation χ4⊕χ5 of

the A5, or better in χ̃7 of S5. The self-dual and antiselfdual splitting of 6 into [(3, 1)⊕(1, 3)]

representations takes place in the spin group of SO(4)′ and these two three dimensional

representation is not related to χ4⊕χ5 of A5. The bosonic degrees of freedom work similarly.

How can we compute these irreducible representations explicitly? For example, for

link fields zm, what does the splitting χ2 ⊕ χ1 mean? Recall that under a group operation

(see table 4), zm → Omn(g)zn. Dropping all the indices, z′ = Oz. The fact that the group

action on the link field is reducible means there is a similarity transformation which takes

all of the O(g) into a block diagonal form. In this case, two blocks have sizes 1 × 1 and

4 × 4. This naturally splits the zm vector space into two components of size one and four,

which never mixes under group action. It is easy to guess the singlet representation: it is
1√
5

∑5
m=1 zm. Now, let us introduce a 5 × 5 orthogonal matrix E that block-diagonalizes
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O(g) for all g ∈ A5. Then we have (E−1z′) = (E−1OE)(E−1z). A little bit work shows

that the E matrix can be expressed in terms of components of the basis vectors em
11

Emµ = (em)µ, Em5 =
1√
5

. (3.29)

The matrix Emn forms a bridge between the irreducible representation of A5 and the rep-

resentations of the twisted Lorentz group SO(4)′. Thus, we obtain the following relations

dictated by symmetry arguments:

Emµzm
n = zµ(x) Em5z

m
n = εµνρσzµνρσ(x)/24 (3.30)

For fermions ξmn, it is easy to show that the continuum fields are ξmn,nEmµEnν = ξµν(x)

and ξmn,nEmµEn5 = εµνρσξνρσ(x)/6. Similarly, the antiholomorphic function Emn,n splits

into Fµν(x) and Dµzµνρσ(x). This completes our discussion of the relation between the

A∗
4 lattice action and twisted theory eq. (3.12). The continuum limit of the Lagrangian

eq. (3.21) at tree level reproduce the twisted theory eq. (3.12).

3.4 Connection with Catterall’s formulation

Another recent proposal for lattice regularization of N = 4 SYM theory had been intro-

duced by S. Catterall. In this section, we want to briefly mention the relation between the

two approaches. In fact, upon realizing the fact that the orbifold lattice produces Mar-

cus’s twist, this is an obvious task. Catterall already provides the mapping between the

Lagrangian eq. (3.12) and the action he employs in latticization [17]. Here, we construct

the relation only in the sense of supersymmetry subalgebras that are manifest in these two

lattice constructions.

Let us rename the twist introduced in the previous section as an A-type twist. In

fact, there is another scalar supersymmetry, associated with Poincaré dual of the 4-form

Grassmann ∗ψ(4). We could have chosen Q = ∗Q(4) = 1
4!εµνρσQµνρσ as the manifest scalar

supersymmetry. We call this B-type supersymmetry. To make the comparison with the

Catterall lattice formulation, it is convenient to dualize the 3-form and 4-forms fields to

vectors and scalars respectively.

1

4!
εµνρσ(zµνρσ , ψµνρσ) = (z, ψ)

1

4!
εµνρσzµνρσ = z,

1

3!
εµνρσξνρσ = χµ, (3.31)

The continuum on-shell A-type supersymmetry transformation are given by 12

Qλ = −( [z, z] + 1
2 [Dµ,Dµ] )

11This relation is true for all A∗
d lattices. In arbitrary d, we have d + 1 linearly dependent d-dimensional

vectors satisfying em.en = δmn − 1

d+1
and

Pd+1

m=1
em = 0. The block diagonalization matrix E takes the

form Emµ = (em)µ, Em,d+1 = 1√
d+1

. The matrix E connects the irreducible representations of Sd+1 to the

ones of SO(d)′.
12The transformations in eq. (3.32), eq. (3.33) and eq. (3.34) can easily be read off of the transformation

given in eq. (4.9) of ref. [8] by using the substitution zµ → Dµ/
√

2 and zµ → Dµ/
√

2.
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Qzµ =
√

2 ψµ, Qψµ = 0

Qzµ = 0

Qξµν = −iFµν

Qχµ =
√

2Dµz

Qz =
√

2ψ, Qψ = 0

Qz = 0 (3.32)

and similarly the on-shell B-type transformations are

Qλ = 0

Qzµ = 0, Qψµ =
√

2Dµφ

Qzµ = −
√

2χµ,

Qξµν = −i(1
2εµνρσ)Fρσ

Qχµ = 0

Qz =
√

2λ, Qψ = (1
2 [Dµ,Dµ] − [z, z])

Qz = 0 (3.33)

Notice that both Q and Q are nilpotent: Q2 = 0, Q
2

= 0, up to the use of equation

of motion. As we have seen in the previous section, an off-shell completion is possible by

introducing an auxiliary field d. A linear combination of A and B-type scalar supersymme-

tries is the exact manifest supersymmetry that is utilized in Catterall’s formulation. Since

the U(1) charges of these two supercharges are equal, we can add them without upsetting

this symmetry. Using the supercharge

Q̃ =
Q(0) + ∗Q(4)

√
2

=
Q + Q√

2
(3.34)

we observe that the off-shell Q̃-action on fields are given by

Q̃zµ = ψµ, Q̃ψµ = Dµz,

Q̃zµ = − χµ, Q̃χµ = −Dµz

Q̃z = (ψ + λ), Q̃(ψ + λ) = −
√

2 [z, z]

Q̃z = 0, Q̃(ψ − λ) = 1√
2
[Dµ,Dµ]

Q̃ξµν = −i√
2
(Fµν + 1

2εµνρσFρσ) (3.35)

The Q̃ transformation satisfies

Q̃2· = δz · , (3.36)

which can seen by using equations of motion. Here, δz is a field dependent infinitesimal

gauge transformation. Notice that Q is not exactly nilpotent, but nilpotent up to a gauge

rotation. Catterall employs eq. (3.34) as the exact manifest supersymmetry on the lattice.

Naturally, continuum actions in terms of propagating degrees of freedom can be easily

mapped into each other. However, the number of bosonic off-shell degrees of freedom

are not same in the two formulation. This can be understood by working the off-shell
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completion of the supersymmetry algebra eq. (3.34). It is different from eq. (3.6) and

necessitates introducing a two form auxiliary field. For the details of this construction,

see [17]. I do not know the precise relation with the formulation of Sugino [21], but similar

considerations may hold. However, I want to comment on the merit of having more than

one formulation in a somewhat idiosyncratic way, by using reasonings from the calculations

of topological correlators in the continuum formulation.

3.5 The fermion sign problem and topological correlators

The extended supersymmetric gauge theories shown in table 1 in general have a fermion

sign problem even in continuum. In the case of N = 4 SYM theory, the source of the

sign problem can be traced to the Yukawa interactions, and therefore to nonvanishing field

configurations of scalars. Conversely, in N = 1 SYM in d = 4 dimensions, a theory without

scalars, the positivity of the fermion Pfaffian can be proven. Here, I will argue that for

a very restricted class of observables, the fermion sign problem should not be a problem.

Similar considerations may hold in some lattice formulations as well. Unfortunately, this

class is really small and the consideration of this section does not mean much for the full

set of correlators of the physical theory. However, one can also pursue a more optimistic

complementary logic [29]. Since many things are known or conjectured about the N = 4 or

other highly supersymmetric target theories, this data can be used to make progress in the

understanding of the sign problem. After all, the sign problem arise because of inadequacy

of the path integral, and is not a pathology of the theory. The reason that one can evade

sign problem for topological correlators is a localization property of the path integral that

we explain below. The ideas in this section borrows directly from the Witten’s classic

construction of topological field theory [1] and adopts the arguments there to the N = 4

SYM theory.

The transformations eq. (3.35) look rather similar to the ones introduced by Witten in

the study of the Donaldson theory [1]. Indeed, the supersymmetry algebras are identical,

Q̃2 = δz. The difference is in the field content. Witten considers the twist of N = 2

theory, an asymptotically free theory in d = 4 dimensions, and addresses questions about

the topological correlators (in the sense of Q̃) in the twisted theory. For the calculation of

topological correlators, to regard Q̃ as a BRST and to make the theory truly topological is

a matter of preference. One can consider the physical theory and still calculate correlators

in the topological sector. Simplest examples of this type is the supersymmetric quantum

mechanics with discrete spectrum. (For continuous spectrum, supersymmetry does not

imply the equality of density of states in the bosonic and fermionic sector and the follow-

ing statements needs refinement.) For example, in the calculation of topological partition

function, (Witten index), one can sum over all states in the Hilbert space. There is an

exact cancellation between paired bosonic and fermionic states with nonzero energy, and

hence only zero energy states contribute. Alternatively, one can declare the theory topo-

logical, and the physical states (Q-cohomology group) of the topological theory are just

the quantum ground states of the full theory. The rest of the Hilbert space is redundant

in the sense of BRST, and the partition function only receives contribution from quantum

ground states. In the language of path integrals, this translates to localization of appro-
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priately defined correlators to the the fixed point of the Q-action in the supersymmetry

transformations, such as the ones eq. (3.32) and eq. (3.35). Therefore, there are stronger

techniques to calculate topological correlators. See for example for a review [38].

Marcus shows that the fixed point of eq. (3.32) is the space of complexified flat connec-

tions. He also argues that the theory reduces to Donaldson-Witten theory if one demands a

reality condition and use the Q̃ in eq. (3.35) [6]. 13 Then, in eq. (3.35), both field strengths

reduce to the usual field strength, i.e, Fµν = Fµν = Fµν . The vanishing condition of the

final equation in that case becomes the instanton equation Fµν + 1
2εµνρσF ρσ = 0 and the

path integral can be expanded around the instantons. Here, we do not wish to make such an

assumption and just consider the theory as it is. This gives a complex version of instanton

equations which relates the holomorphic field strength to the dual of the anti-holomorphic

field strength:

F (2) + ∗F (2) = 0, Fµν + 1
2εµνρσFρσ = 0 (3.37)

or equivalently using eq. (3.4), we can split it into its hermitian and antihermitian parts.

In this case, the equation takes the form:

Fµν − i[Sµ, Sν ] + 1
2εµνρσ(F ρσ − i[Sρ, Sσ]) = 0

(DµSν − DνSµ) − 1
2εµνρσ(DρSσ − DσSρ) = 0 (3.38)

I do not know the full set of solutions to these equations. However, it seems rather plausible

that the moduli space (as in Donaldson-Witten theory) is just isolated instantons under

circumstances analyzed in [1]. Then, by using the weak coupling limit of the theory and by

exploiting the coupling constant independence of the partition function, one can calculate

certain observables. It seems sufficient to keep the quadratic part of the Lagrangian (owing

to weak coupling) and benefit from the steepest decent techniques. If all this holds, then

the fermionic determinant around such instanton configurations should be real, and by

supersymmetry should be related to the bosonic determinant. This simply follows from the

equality of nonzero eigenvalues of the bosonic and fermionic quantum fluctuations around

the instanton background. For example, under circumstances where the dimension of the

instanton moduli space is zero, and hence there are no fermionic zero modes, the partition

function of the theory should be a topological invariant [1] and should be calculable without

any reference to fermion sign problem. Similar considerations also hold for other topological

correlators. The main point is that the fixed points of some Q-actions may lead to the finite

action field configurations which admits the saddle-point approximations. In the case where

the observables are independent of coupling constants, the partition function localizes to

these fixed points and hence dominates the path integral. Under such circumstances, one

can evade fermion sign problem. Also see [38] about localization.

13This reality condition is not compatible with the gauge invariance on the lattice construction. If it were

possible to implement this condition, this would yield a lattice formulation of N = 2 SYM theory in four

dimensions and would be remarkable.
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4. The Blau-Thompson twists and three dimensional lattices

In this section, we show that the orbifold lattice action of the three dimensional theories

produce the Blau-Thompson type twists [7]. In each case, we will see that the point

group symmetry of the lattice action enhances to the twisted rotation group SO(d)′ in

the continuum. We will also observe that a continuous R-symmetry which has the same

rank as the R-symmetry of the continuum twisted theory is exactly realized on the cubic

orbifold lattices. The features of these lattices in the sense of representation theory follows

very similar pattern to our discussion in the previous section. Namely, there are always

spacetime scalars in vector representation of the twisted rotation group and hence lattice,

and the double valued spinor representation of the continuum theory are always associated

with the single valued representations of the orbifold lattice theories. Since all the tools

that we need to use are developed in the previous section, our presentation will be brief

and will emphasize symmetries rather than technical details.

4.1 The N = 4 SYM in d = 3

The N = 4 SYM theory in three dimensions possess a global G = SU(2)E × SU(2)R1
×

SU(2)R2
where SU(2)E ∼ SO(3)E is the Euclidean Lorentz symmetry and SU(2)R1

×
SU(2)R2

is the R-symmetry of the theory. To construct the Blau-Thompson twist [7], we

take the diagonal subgroup of the spacetime SO(3) ∼ SU(2)E and SU(2)R1
. The twisted

theory possess an SO(3)′ × SU(2)R2
symmetry.

Under G, the vector boson, scalars and fermions transform as (3, 1, 1), (1, 3, 1), (2, 2, 2).

In the twisted theory, the the gauge bosons and scalars are on the same footing and they

transform as (3, 1). The fermions splits as (3, 2)⊕ (1, 2), both of which are doublets under

SU(2)R2
. However, our lattice only respects the U(1) subgroup of the SU(2)R2

and the full

SU(2)R2
only emerges in the continuum. Therefore, we will express the continuum action

with manifest G′ = SO(3)′×U(1) symmetry. The fermions and bosons under G′ transform

as

fermions → 1 1

2

⊕ 3− 1

2

⊕ 3 1

2

⊕ 1− 1

2

, bosons → 30 ⊕ 30.

We label the fermions as (λ,ψµ, ξµν , ξµνρ). The action of the twisted theory is

L =
1

g2
Tr

[
Q

(
λ(1

2 id + 1
2 [Dµ,Dµ]) + i

4ξµνFµν

)
+ 1

2ξµνρDµξνρ

]

=
1

g2
Tr

[
1
8([Dµ,Dµ])2 + 1

4 |Fµν |2 + λDµψµ + ξµνDµψν + 1
2ξµνρDµξνρ

]
(4.1)

The off-shell Q-transformations are given by

Qλ = −id, Qd = 0

Qzµ =
√

2ψµ, Qψµ = 0,

Qzµ = 0 µ = 1, . . . 3

Qξµν = −iFµν

Qξµνρ = 0 (4.2)

where Q2 = 0. The action is a sum of a Q-exact and Q-closed term. The Q-invariance of

the Q-closed term may be seen by the use of Jacobi identity eq. (3.13).
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Cubic Lattice: The three dimensional orbifold lattice action for N = 4 d = 3 theory [12]

is a simple latticization of the Blau-Thompson twist of the theory. The lattice possess an

S3 n Z2 point group and a continuous U(1) R-symmetry group. Inspecting the fermionic

degrees of freedom; we observe that the fermions are associated with p-cells: one site, three

links, three faces and one cube.

fermions → 1 ⊕ 3 ⊕ 3 ⊕ 1 . (4.3)

In the continuum, they fill the antisymmetric tensor representation of SO(3)′. Similarly,

the vector bosons reside on the links, and they distribute as

bosons → 3 ⊕ 3 . (4.4)

In the continuum, they form the vector presentation of SO(3)′. The lattice formulation

along with the details of the superfield formulation of the twisted theory is given in [12].

4.2 The N = 8 SYM in d = 3

The N = 8 SYM in d = 3 theory in d = 3 dimensions possess a global G = SO(3)E×SO(7)R
symmetry. Under G, the fields transform as

fermions → (2, 8), gauge boson → (3, 1), scalars → (1, 7), (4.5)

In order to construct the Blau-Thompson twist [7, 33] we decompose the R-symmetry as

SO(7)R → SO(3)R1
×SO(4)R2

∼ SU(2)R1
× (SU(2)×SU(2))R2

. Under this decomposition,

the scalars and fermions splits as 7 → (3, 1, 1) ⊕ (1, 2, 2) and 8 → (2, 2, 1) ⊕ (2, 1, 2). As

usual, we take the diagonal sum of the Euclidean rotation group and the R1-symmetry

group.

The twisted theory is invariant under G′ = SO(3)′ × (SU(2)× SU(2))R2
, and the fields

transform under G′ as

fermions → (1, 2, 1) ⊕ (3, 2, 1) ⊕ (3, 1, 2) ⊕ (1, 1, 2)

gauge boson → (3, 1, 1), scalars → (3, 1, 1) ⊕ (1, 2, 2) . (4.6)

As in the case of the N = 4 theory in three dimensions, even though (SU(2)× SU(2))R2
is

a symmetry of the continuum theory, the orbifold lattice only respects an abelian U(1) ×
U(1) subgroup. The full non-abelian symmetry emerges as an accidental symmetry in the

continuum. The transformation of the fields under SO(3)′×U(1)×U(1) may be summarized

as

z ⊕ z → 11,0 ⊕ 1−1,0, zµ ⊕ zµ → 30,0 ⊕ 30,0, zµνρ ⊕ zµνρ → 10,1 ⊕ 10,−1 (4.7)

for the ten bosonic degree of freedom and

λ ⊕ ψµ ⊕ ξµν ⊕ χµνρ → 1 1

2
, 1
2

⊕ 3− 1

2
,− 1

2

⊕ 3 1

2
, 1
2

⊕ 1− 1

2
,− 1

2

α ⊕ χµ ⊕ ξµν ⊕ ψµνρ → 1 1

2
,− 1

2

⊕ 3− 1

2
, 1
2

⊕ 3 1

2
,− 1

2

⊕ 1− 1

2
,+ 1

2

(4.8)

for the sixteen fermions.
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Cubic Lattice: The three dimensional lattice action for N = 8 d = 3 theory reproduces

the Thompson-Blau twist in the continuum. The symmetries of the cubic lattice action

are S3 n Z2 n Z2 point group and a U(1) × U(1) R-symmetry group. The distribution of

the fermions on the lattice follows very similar pattern to the N = 4 theory. Since the

number of fermions is doubled with respect to N = 4, each p-cell accommodates twice as

many fermions. The fermions distributes to p-cells as

fermions → 2(1 ⊕ 3 ⊕ 3 ⊕ 1) (4.9)

on the lattice. Similarly, the elementary bosons reside on the sites, links, and 3-cell and

they distribute as

bosons → 2(1 ⊕ 3 ⊕ 1) . (4.10)

In the continuum, they are scalars, vectors and antisymmetric third rank tensors under

SO(3)′.

AAA∗
3 (bcc) lattice: In order to see the Blau-Thompson twist from the body centered cubic

(bcc) lattice, we follow the strategy of section 3.3. The lattice action possess the octahedral

symmetry Oh ∼ S4 n Z2 where S4 is the permutation group and Z2 is the inversion group.

The lattice also has a charge conjugation symmetry. 14

We classify fields under the rotational subgroup A4 of the tetrahedral group S4.
15

Therefore, we consider the group action from each of the four conjugacy classes of A4 and

calculate the characters. For the one index link fields, we find that there is an A4-invariant

subspace as in the case of the four dimensional lattice and these link fields are indeed

reducible. The two index link fields are also reducible. A simple calculation yields

χ(λ) = χ(α) = (1, 1, 1, 1) = χ1

χ(zm) = χ(ψm) = χ(zm) = χ(ψm) = (4, 1, 1, 0) = χ4 ⊕ χ1

χ(ξmn) = (6, 0, 0,−2) = χ4 ⊕ χ4 , (4.11)

which is a natural counterpart of the result eq. (3.23).

As in the discussion of A5 symmetry group, there is an analogous four times four matrix

E which splits all the O(g) ∈ A4 into block-diagonal form. This matrix is used to identify

the irreducible representations of the A4 group with the ones of the twisted rotation group

14The octahedral symmetry group Oh may be constructed in two different ways. One is Oh ∼ Td n Z2

where Td is the symmetry group of tetrahedron and the other is Oh ∼ O n Z2 where O is the rotation

subgroup of Oh. The Z2 is inversion. In identifying the lattice fields with the Blau-Thompson twisted

version of the continuum, it is sufficient to work with S4/Z2 = A4. Both A4 and S4 respect holomorphy for

bosonic multiplets. The S4 group actions on lattice fields turns bosonic (anti)-chiral supermultiplets into

(anti)-chiral ones. However, the fermionic chiral and anti-chiral multiplets mixes under the S4 action. The

Z2 inversion exchanges chiral and antichiral bosonic multiplets.
15The same lattice structure also shows up in spatial lattice formulation of d = 4 dimensional N = 4

theory which is suitable for a Hamiltonian formulation [10]. The analysis of the irreducible representations

of the full S4nZ2nZ2 symmetry (the last Z2 is charge conjugation) should be helpful to map the correlation

functions of the continuum to the ones on the lattice.

– 22 –



J
H
E
P
1
0
(
2
0
0
6
)
0
8
9

classes: (1) (123) (132) (12)(34)

sizes: 1 4 4 3

χ1 1 1 1 1

χ2 1 ω ω∗ 1

χ3 1 ω∗ ω 1

χ4 3 0 0 -1

Table 5: The character table of A4, the pure rotation subgroup of tetrahedron. The full point

group symmetry of the lattice action on A∗

3
lattice is S4 n Z2

SO(3)′. Thus, in the continuum of A∗
3 lattice, we identify Emµzm = zµ, Em4z

m = εµνρzµνρ/6

for the fields associated with links. Similarly, the two index fermions of the A∗
3 lattice are

identified with the continuum fermions as ξmnEmµEnν = ξµν and ξmnEmµEn4 = εµνρξ
νρ/2.

Further details, including a superfield formulation of the Blau-Thompson twist can easily

be extracted from section four of ref. [8].

5. Two dimensional examples

5.1 A new twist of the N = (2, 2) SYM theory

The N = (2, 2) SYM in d = 2 can be obtained by dimensional reduction of four dimensional

N = 1 SYM theory down to two dimensions. The theory possess a global G = SO(2)E ×
SO(2)R1

×U(1)R2
symmetry where SO(2)E is Euclidean Lorentz symmetry, SO(2)R1

is the

symmetry due to reduced dimensions and U(1)R2
is the R-symmetry of the theory prior to

reduction. The twisted Lorentz group SO(2)′ is the diagonal subgroup of SO(2)E×SO(2)R1
.

The vector Vµ transforming as (2, 1)0 and the scalar Sµ transforming as (1, 2)0 under

G become (2)0 under G′ = SO(2)′ × U(1)R2
. We complexify these fields into zµ and

zµ as in eq. (3.2). To see the transformation properties of the fermions is a little bit

tricky, since the fermions transform under the spin group of SO(4)E , i.e, SU(2) × SU(2)

(before the reduction). However, the reduction is inherently real, and splits SO(4) →
SO(2)E × SO(2)R1

.

In order to understand the transformation properties of fermions, we will take advan-

tage of the relation between bispinors and vectors in four dimension. Let va, ω,and ω be

the gauge field, the left and right handed spinors of the d = 4 theory where a = 1, . . . 4.

They transform under SU(2) × SU(2) × U(1)R respectively as (2, 2)0, (2, 1)− 1

2

, (1, 2) 1

2

.

We can turn the vector into a bispinor by using σa = (1, i~σ) where ~σ is Pauli matrices

and 1 is the two dimensional identity matrix. ωα (ωα̇) carries an undotted (dotted) spinor

index α ( α̇) and the index structure of the sigma matrix is (σµ)α̇α. Now, we construct

the bispinors vα̇α = (vaσa)α̇α and ωα̇ωα. These two bispinor transform identically under

SU(2)×SU(2)×U(1)R as (2, 2)0. The vα̇α can suitably be expressed in terms of complexified
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SO(2)′ doublets zµ and zµ. We have

vα̇α =
√

2

(
z1 −z2

z2 z1

)
, and ωα̇ωα =

(
ω1̇ω1 ω1̇ω2

ω2̇ω1 ω2̇ω2

)
(5.1)

where the columns are SO(2)′ doublets, zµ and εµνz
ν . From eq. (5.1), we see that ωα̇ω1

and ωα̇ω2 has to be SO(2)′ doublets (vectors). Comparing with the columns of vα̇α matrix,

we identify ωα̇ with an SO(2)′ vector, ω1 with a scalar and εµνω2 with a second rank

antisymmetric tensor. We label these accordingly as ψµ, λ, ξµν . Therefore, under the

twisted symmetry SO(2)′×U(1)R2
, we obtain the transformation properties of the fermions

and bosons as

λ ⊕ ψµ ⊕ ξµν → 1 1

2

⊕ 2− 1

2

⊕ 1 1

2

, zµ ⊕ zµ → 20 + 20. (5.2)

This is indeed the two dimensional counterpart of the twist introduced by [6, 7].

The off-shell supersymmetry transformation generated by the nilpotent scalar super-

charge is given by

Qλ = −id, Qd = 0,

Qzµ =
√

2ψµ, Qψµ = 0,

Qzµ = 0, µ = 1, 2

Qξµν = −iFµν , (5.3)

where d as usual is an auxiliary field introduced for the off-shell completion of the su-

persymmetry algebra Q2 = 0. This is clearly a Blau-Thompson and Marcus type twist,

discussed in sections 3 and 4.1. The action of the twisted theory is given by a Q-exact

expression

L =
1

g2
QTr

[
λ(1

2 id + 1
2 [Dµ,Dµ]) + i

4ξµνFµν
]

=
1

g2
Tr

[
1
8([Dµ,Dµ])2 + 1

4 |Fµν |2 + λDµψµ + ξµνDµψν
]
. (5.4)

The SO(2)′ × U(1)R2
symmetry is manifest. Unlike the three and four dimensional coun-

terparts, the action does not have a Q-closed term and its Q-invariance is manifest. This

theory can be made topological by regarding Q as a BRST. The study of the corresponding

topological theory may be interesting.

Square Lattice: The two dimensional orbifold lattice action for N = (2, 2) theory yields

the Blau-Thompson type twist in the continuum [9]. We observe that the fermions on the

lattice are associated with one site, two links and one face on each unit cell of the lattice.

In the continuum, they fill, respectively, the scalar, vector and second-rank antisymmetric

tensor representation of SO(2)′. The complex bosons are associated with the links (in

both orientations) and they transform as vectors under SO(2)′. The continuum U(1)R2

symmetry of the twisted theory is an exact symmetry on the lattice.
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5.2 The N = (4, 4) SYM in d = 2

The N = (4, 4) SYM in d = 2 can be obtained by dimensionally reducing the six di-

mensional N = 1 SYM theory down to two dimensions. The theory possess a SO(2)E ×
(SU(2)×SU(2))R1

×SU(2)R2
symmetry group. The R1 symmetry is the internal symmetry

due to reduction from six down to two dimensions and R2 is the R-symmetry of the theory

prior to reduction. The twisted theory possesses a SO(2)′ × U(1)R1
× SU(2)R2

symmetry

group. The orbifold lattice only respects the U(1) subgroup of the SU(2)R2
and therefore

we will express the representations of the fields under G′ = SO(2)′ ×U(1)×U(1). The six

bosonic fields transform under G′ as

z ⊕ z → 11,0 ⊕ 1−1,0, zµ ⊕ zµ → 20,0 ⊕ 20,0 (5.5)

The eight fermion spits into two groups of four as

λ ⊕ ψµ ⊕ ψµν → 1 1

2
,− 1

2

⊕ 2− 1

2
, 1
2

⊕ 1 1

2
,− 1

2

,

λ ⊕ ψµ ⊕ ψµν → 1 1

2
, 1
2

⊕ 2− 1

2
,− 1

2

⊕ 1 1

2
, 1
2

(5.6)

This twist is examined in detail in [34].

Square Lattice: The two dimensional orbifold lattice action for N = (4, 4) theory yields

the Blau-Thompson type twist in the continuum. Having twice as many fermion with

respect to N = (2, 2) theory, each p-cell on the lattice accommodates twice as many

fermions (in opposite orientation). Besides discrete lattice symmetries, the lattice also

possess a continuous U(1)×U(1) symmetry. In the continuum, these symmetries enhances

to SO(2)′ ×U(1)R1
× SU(2)R2

symmetry of the twisted theory. The superfield formulation

of the twisted continuum and lattice theory is given in [12].

5.3 The N = (8, 8) SYM in d = 2

The N = (8, 8) SYM theory possess an SO(2)E × SO(8)R symmetry group. The global

symmetry of the twisted theory is G′ = SO(2)′ × SU(2) × SU(2) × U(1). The ten bosons

transform under G′ as

zµ ⊕ zµ → (2, 1, 1)0 ⊕ (2, 1, 1)0
zµν ⊕ zµν → (1, 1, 1)1 ⊕ (1, 1, 1)−1, z̃ → (1, 2, 2)0 (5.7)

For the sixteen fermionic degree of freedom, we obtain

λ ⊕ ψµ ⊕ ψµν → (1, 2, 1) 1

2

⊕ (2, 2, 1)− 1

2

⊕ (1, 2, 1) 1

2

λ ⊕ ψµ ⊕ ψµν → (1, 1, 2)− 1

2

⊕ (2, 1, 2) 1

2

⊕ (1, 1, 2)− 1

2

(5.8)

Square Lattice: The fermions are distributed in multiples of four to each p-cell as 4(1⊕
2⊕ 1). Four of the bosons (labeled as z̃) are associated with site, four of them (zµ and zµ)

with the links each accommodating two, and two of them zµν and zµν on the face diagonal.

For details, see [8].
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AAA∗
2 (Hexagonal) Lattice: The A∗

2 orbifold lattice action possess a point group symme-

try S3 n Z2, where S3 is the permutations of the chiral multiplets and Z2 is the inversion

symmetry swapping chiral and antichiral multiplets. Another discrete symmetry of the

action is charge conjugation. Following the analysis of the A∗
3 and A∗

4 lattices, it is suffi-

cient to construct the pure rotation subgroup A3 of S3 to make connection to the twisted

form. However, A3 is an abelian cyclic group and it only possess one dimensional represen-

tations. This is not a problem. Recall that the two dimensional vector representation of

SO(2)′ is also reducible when we regard it in its spin group, U(1)′. The A3 character table

has two complex conjugate characters χ2 = (1, e2πi/3, e−2πi/3) and χ3 = (1, e−2πi/3, e2πi/3).

These two complex conjugate representation of the A3 group has to be regarded as one

two dimensional representation. The sum χ = χ2 + χ3 = (2,−1,−1) is a two dimensional

real character and is irreducible over R. Alternatively, we can also work with the full

nonabelian point group symmetry of the lattice. The S3 n Z2 group has two dimensional

representations and a little bit more information than we need here. 16

As in the A∗
3 and A∗

4 lattices, there is a A3-invariant subspace of the link fields, and

consequently, the link field splits into a singlet and a two dimensional representation. We

obtain the characters as

χ(zm) = χ(zm) = (3, 0, 0) = χ ⊕ χ1

χ(z) = χ(λ) = χ(λ) = (1, 1, 1) = χ1 (5.9)

Therefore, the sixteen fermions and ten bosons splits as

fermions → 4(χ1 ⊕ χ ⊕ χ1) (5.10)

bosons → 4χ1 ⊕ 2χ3 ⊕ 2χ1 (5.11)

as in the continuum twisted theory discussed above. There is also an analogous matrix E
which maps the irreducible representations of S3 (or A3) into the ones of twisted rotation

group SO(2)′. The matrix E brings the group actions of A3 into a block diagonal form.

Thus, in the continuum of A∗
2 lattice, the fields associated with the links become vector

and scalar representation of SO(2)′. Explicitly. we have Emµzm = zµ, Em3z
m = εµνzµν/2

and similar mappings for other fields.

6. Conclusions and prospects

Certainly one of the most bizarre features of the orbifold lattices was associating spinless

bosons of the continuum theory with the link fields which transform nontrivially on the

lattice, and associating double valued spinor representation of the continuum with the single

valued representations of the point group of the lattice [10, 9, 12, 8, 11]. Remarkably, the

orbifold lattice in the continuum gave Lorentz invariant, highly supersymmetric theories

with no or little fine tuning. This work hopefully demystifies the orbifold lattices by relating

them to the twisted versions of supersymmetric theories. Many twisted theories arise, in

16The same lattice structure also emerges for the spatial lattice of N = 8 theory in d = 3 dimensions.

See the footnote. 15
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the continuum, as a courtesy of the orbifold projection. These twisted versions are often

worked in the context of topological field theory, and we hope this work leads to further,

fruitful interplay between these two branches. Before moving to the prospects, let us give

the summary of our results:

• The orbifold lattices, in the continuum, reproduce the Marcus and Blau-Thompson

twists of the extended supersymmetric theories. Conversely, it is possible to discretize

(with a well-defined recipe) the Marcus and Blau-Thompson twists of the extended

supersymmetric theories to obtain the orbifold lattice action.

• The point group symmetry of the orbifold lattice is a subgroup of the twisted Lorentz

group, and not the real Lorentz group.

• The exact supersymmetries on the orbifold lattices are the nilpotent spin zero, scalar

supersymmetries of the continuum twisted theory.

• The p-form fields on the continuum are naturally associated with p-cells on the hy-

percubic lattices. For more symmetric A∗
d lattices, the irreducible representations of

lattice rotation group are in one to one correspondence with the representations of

twisted rotation group.

It is also possible to understand the spatial orbifold lattices [10] and deconstruction of

higher dimensional supersymmetric theories [39] from the viewpoint of the present work.

They correspond to latticization of partial or half twisted versions of the corresponding

target field theories. Also, a few new partial twisting of N = 2, and N = 4 in d = 4

supersymmetric Yang-Mills theory seems to exist.

It is clear that the twisted versions of the supersymmetric theories are in a more

peaceful existence with lattice. The main point is that in the twisted theories some of the

supercharges are spin zero scalars, and they do not make any reference to the underlying

structure of spacetime. Even when carried into the lattice, the supersymmetry algebra

Q2 = 0 still holds with no reference to finite lattice translations. We believe this relation

is the key for the lattice regularization for a larger class of supersymmetric theories. It

seems that twisted versions of certain sigma-models in two dimensions may provide good

opportunities. Some theories of this type are known to have an isolated, discrete vacua, a

discrete spectrum and mass gap.

There are also interesting directions to explore in the continuum twisted versions . An

interesting class of theories arises from the SO(4)′ ×U(1) and Q = 1 symmetry preserving

deformations of the twisted action eq. (3.17). Clearly, there is a few parameter family

of deformations of eq. (3.17) satisfying these requirements. For example, altering L2 into

L2 = QTr
(
c1

i
4ξµνFµν +c2

1
12

√
2
ξνρσDµzµνρσ

)
, where c1 and c2 are deformation parameters

is of this type. For L3, the two SO(4)′ × U(1) singlets are glued to each other because of

Q = 1 supersymmetry, however an overall parameter is possible. Only for a special choice

of the deformation parameters (for example c1 = c2 = 1 etc), and in flat spacetime, this

theory eq. (3.17) is a rewriting of N = 4 SYM and is under the strong protection of

underlying higher symmetry, sixteen supersymmetries. The other theories, for example
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with c1 6= c2 may be worth exploring, both in flat and curved spacetimes. The most

natural framework to think about such deformations seems to be (Euclidean) D3-branes

wrapped on curved four manifolds. It is well-known that the world-volume of the wrapped

D-branes do not realize the usual form of the supersymmetry, but a twisted version of it.

The constructions in this paper can be considered as a straightforward realization of this

idea, because underlying manifold (in continuum) is flat, d-dimensional torus T d.

Another issue which arises from the twisted versions are related to BPS solitons. As in

the Witten’s treatment of Donaldson theory [1], where instantons appears as fixed points

of supersymmetry transformations, the vanishing of fields under Q̃ in eq. (3.35) produce

a complex generalization of the instanton equation. Similar considerations for the Blau-

Thompson twists of d = 3, N = 8 theory yields a complex generalization of monopole

equation. It is desirable to understand these solitons in more detail, and in particular the

structure of their moduli spaces. Research in this direction is ongoing.
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A. Twistings by discrete R-symmetries and finite spin groups

In this appendix, I will briefly sketch an alternative view on twisting, from the viewpoint of

discrete groups. For clarity, I will distinguish the groups with double valued representation

from the ones with single valued representations. For example, spin groups will be treated

differently from the orthogonal group.

In this paper, we considered theories with sufficiently large R-symmetries such that

a nontrivial homomorphism from the full Lorentz group to the R-symmetry group was

possible. We performed twists of a rather simple kind by constructing the diagonal sum

Diag(Spin(d) × Spin(d)) = Spin(d)′ (A.1)

At the end, only integer spin representations appeared in Spin(d)′. These representations

are p-form fields and are the shared representations with SO(d)′. That means, in the

twisted theory, we really do not need to think of spin group anymore since there are no

spinor representations at all. One of the main observation of this paper is that the point

group symmetry of the supersymmetric orbifold lattices is a finite subgroup of the SO(d)′.

Can we understand the above construction in the language of finite groups? The

answer is positive and complementary to the approach in the bulk of this paper. The

answer clearly requires the knowledge of finite subgroups of spin groups. The classification

of these groups is well know, and these are the spin groups of the point group symmetries.
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Let us consider a particular case: The spin group of SO(3) is Spin(3) = SU(2). It is

related to SO(3) by a two to one map SU(2)/ ± 1 = SO(3). Let us call this map π. We

have π : SU(2) → SO(3). Given any finite subgroup Gf of SO(3), we can look for π−1(Gf).

This gives a list of finite subgroups of the SU(2), which we label as G̃f . Examples of G̃f

are Ã3, Ã4, S̃3, S̃4. These are respectively, the spin groups (doubling) of the finite groups

A3, A4, S3, S4 which frequently appeared as the point group symmetry of the lattices. The

doubled-groups G̃f admit spinor representations. The number of conjugacy classes (hence

characters) of G̃f is always larger then the one of Gf , but usually not twice as much.

Let us consider a finite subgroup of Spin(d)L × Spin(d)R, which we will label as

G̃f × G̃f . The first one of these corresponds to spacetime and the latter corresponds to

R-symmetry. Let us assume the spacetime is discretized. Then the fields transforming

in irreducible representations of Spin(d) will split into irreducible representations of G̃f .

For low dimensional representation of Spin(d), there is usually a single corresponding

representation in G̃f and there is no splitting. Of course, high dimensional representations

of the Spin(d) will split into many representation of G̃f since, simply, the representations

of G̃f are finite dimensional. This is similar to the level spitting of an atom inserted into

a field of crystal potential which has a finite symmetry group. Assuming the perturbing

potential has a lower symmetry, the degeneracies are determined by the representations of

the perturbation. In our case, for the fields appearing in Lagrangian, there is usually just a

single representation to be matched with in lattice. In order to obtain the orbifold lattices,

it seems inevitable that the internal R-symmetry has to be restricted to a finite spin group

as well. This finite R-spin group has to be necessarily identical to the G̃f of spacetime for

the desired outcome.

Let us consider an example: A spacetime spinor fermion ψα̇,α in the bi-spinor repre-

sentation of Spin(3)L ×Spin(3)R. It transforms under Spin(3)L ×Spin(3)R as ψ → LψR†

with obvious action of L and R. Let us assume that L is an element of double-group G̃f ,

and let us consider a particular combination of the field such as Tr ψ. (I will come back to

other components momentarily.) Then, it is clear that whatever L action we choose, the

field Tr ψ will remain invariant as long as I restrict R to discrete operations R = L. In that

case Tr ψ → Tr LψR† = Tr LψL† = Tr ψ. That means the field Tr ψ is invariant under the

diagonal sum of G̃f × G̃f . Let us call this diagonal subgroup G̃′
f . Then we can define the

twisted discrete point group as

Diag(G̃f × G̃f) = G̃′
f . (A.2)

As in the case of its continuous counterpart, there are no double-valued representations

appearing in G̃′
f . Therefore, the group is really just G′

f , which is a subgroup of the twisted

rotation group SO(d)′.

Now, let us come back to the other components of the bispinor field and treat them

slightly more rigorously. The spin group Ã4 has seven conjugacy classes (see, for exam-

ple, [40], page 393) whereas as shown in table 5, the A4 has only four. Rather than exam-

ining the details of representation of Ã4, we want to use necessary information to see the

fate of the other components of ψα̇,α field. The conjugacy classes with their multiplicities
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are

(1), S, 4(123), 4(132), 4(123)S, 4(132)S, [3(12)(34) + 3(12)(34)S]

where S is the 2π rotation such that S2 = 1. The character for the two dimensional spinor

representation is χ(ψα̇) = (2,−2, 1,−1,−1, 1, 0). Under the diagonal Ã
′

4, ψα̇,α transform as

χ(ψα̇,α) = χ(ψα̇) × χ(ψα̇) = (4, 4, 1, 1, 1, 1, 0). The product splits into two representations,

and these are indeed common representations with A
′

4. Therefore, it is sufficient to inspect

the character table of A4. We conclude χ(ψα̇,α) = χ4 ⊕χ1 as we expect. The bispinor ψα̇,α

splits into single valued, a tree dimensional vector representation and a one dimensional

scalar representation under A′
4. Explicitly, we have

ψα̇,α = (ψ012 + ψµσµ)α̇,α, or ψ0 = 1
2 Tr ψ, ψµ = 1

2 Tr ψσµ (A.3)

where σµ are the usual Pauli matrices.

Finally, I do not know a lattice formulation which is supersymmetric and invariant

under G̃f × G̃f or G̃f× (full R-symmetry). The difficulty is that; under the real spacetime

symmetry group scalars, gauge bosons and fermions are treated on very different footing

on the lattice. However, the twisted version happily accommodates all while preserving a

subset of supersymmetry.
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